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The mean dimensions of semicrystallized chains having long crystallized sequences are calculated as 
functions of the crystallinity. Models of chain incorporated in the monocrystal are defined and their 
mean dimensions are expressed as functions of the molecular weight of the chain, taking into account 
the crystalline parameters. The effects of introducing amorphous sequences in the chain are then 
examined. Finally, the case of a real semicrystallized polymer containing pure amorphous regions is 
considered. The results are discussed as functions of crystallinity, molecular weight and crystalline 
parameters of two different polymers: polyethylene and isotactic polystyrene. In particular, it is 
shown that conformation with long crystallized sequences can lead to a non-variation of the radius of 
gyration as in Flory's model. 

INTRODUCTION 

Recent experiments have shown that the conformation of 
polymer chains in solution 1 or in the solid state 2'3 can be 
determined using the small-angle neutron scattering tech- 
nique (SANS). The labelling of some chains by deuteration 
provides a neutron contrast without significantly changing 
the physicochemical properties of the polymers 4. 

Many papers 2'3's have already been published on neutron 
scattering of amorphous as well as of crystallized polymers 
in the bulk state. In the latter case most experiments have 
been performed on polyethylene s'6 for which fast crystalli- 
zation processes occur in the medium. For polymers crys- 
tallized in bulk, the results have been interpreted using 
Flory's model for which the chain crystallizes through many 
monocrystals remaining globally Gaussian. We know of no 
calculations which evaluate the mean dimensions of confor- 
mations with long crystallized sequences. This situation 
could occur, for example, in monocrystals grown from dilute 
solutions 7'8 or in samples crystallized near the melting point 
and for polymers exhibiting slow growth in the rate of 
crystallization. 

It is the purpose of this paper to determine the radii of 
gyration (which can be directly deduced from initial beha- 
viour of the scattered intensity in SANS experiments) as 
functions of crystallinity taking into account that a crystal- 
line polymer is generally an heterogenous medium. Two 
extreme idealized situations (Figure 1) can describe the 
heterogenity in our approach. The first (1) is a blend of 
amorphous chains on the one hand and fully crystallized 
chains confined to the same monocrystal on the other. In 
the second (2), chains made of long amorphous and crystal- 
line sequences have the same crystallinity as the medium. 
To approach the chain conformation in a crystalline polymer 
these two extreme cases must be superposed. In such a 
frame, mean dimensions obtained in (1) and (2) have to be 
separately computed. 

As a first step case (1) will be considered. Two different 
types of chain incorporation in the monocrystal have been 
then taken into account: 

(i) unidirectional crystallization (UC). For this model 
(Figure 2a), the chain crystallizes along an (h, k, 0) plane of 
the crystalline lattice; 

(ii) switch-board incorporation (SB). For this model the 
chain crystallizes always parallel to the c-axis of the crystal- 
line lattice but otherwise unrestricted. This type of incor- 
poration can be described with a two-dimension random 
walk (Figure 2b). 

Cas~ 1 

Cas~ 2 ] ~  

Figure I Schematic representation of possible chain conformations 
in a semicrystalline polymer 
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Figure 2 Schematic representation of an IPS monocrystal seen from 
above. Squares correspond to the UC incorporation while magnified 
points represent SB incorporation. Full lines and broken lines dis- 
tinguish schematically the junction loops located on different sides 
of the monocrystal 

= x ~  c + (1 - X ) N a  

As a second step, three models resulting from the com- 
bination of long crystallized and amorphous sequences (case 
2 o f  Figure 1) are proposed (Figure 3): 

(a) a model with one amorphous and one crystallized 
sequence (AC); 

(b) a model with one crystallized and two amorphous 
sequences (ACA); 

(c) a model with two crystallized and one amorphous 
sequence (CAC). 

The results have been discussed in comparison with 
Gaussian statistics and Flory's model. They show that be- 
yond three sequences Flory's behaviour is rapidly recovered, 
justifying our restriction. 

General formulations have been developed introducing 
the molecular weight of the chain, its degree of crystallinity 
and the crystallographic parameters. Numerical calculations 
have been performed using either the parameters for poly- 
ethylene (PE) which has been widely studied or calculations 
which have been developed for isotactic polystyrene (IPS) 
for which experimental neutron scattering results are pre- 
sented in the following paper. 

THEORETICAL 

The general expression of the apparent radius of gyration of 
a set of N scattering elements can be written: 

R ] -  1 ~ ~ / a  i/~/r] ( i )  

i J 
m 

where r. 2. is the mean square distance between the scattering 
tl 

centres of contrast factor/~i and/~j. 
For a tagged chain composed of two different scattering 

centres (in our case amorphous and crystalline sequences), 
the radius of gyration can be written according to an expres- 
sion calculated by Leng and Benoitg: 

x + ( 1 - x ) R ,  + . 2  

(2) 

for which IQ, Ra and t~c, R c  are respectively the contrast 
factors and the radii of gyration of amorphous and crystal- 
line sequences, x is the crystaUinity and L 2 the mean square 
distance between the centres of mass of th-e two sequences. 
/~,/~a,/~c may be expressed as: 

o I 

/1 a = v a Ka 

t 

la c = vcK  c (3) 

where v a and v c are the specific volumes with self-explanatory 
t r subscripts and K a and K c depend only on the coherent 

lengths per unit volume of the monomer (b~n) and the sur- 
rounding (b's) according to: 

K t  t t 
= b m - b s (4) 

Since the monomer is the same for the two sequences, con- 
trast factors/a c and/~a depend solely on the specific 
volumes. For many crystalline polymers, specific volumes 
differ by approximately 10%. From this argument it is easy 
to show that the terms lacX/la and ga(1 - x)/l~ can be respec- 
tively approximated by x and (1 - x) without significantly 
changing the results. Finally, general expression of the 
radius of gyration useful in our study reduces to: 

R g  2A~2 ~ r  2 

i ! 

(5) 

Chain crystallized in one monocrys ta l  

We calculate expression (5) as a first step for the incor- 
poration models UC and SB by considering Figure 4. The 
solid line represents the basic element needed for the calcu- 
lation. By coupling several of these elements as in Figure 4 
both models may be built. 

Let us consider two scattering centres of the crystallized 
chain belonging respectively to the basic elements i and j 
defined by their subscripts in and jm.  The vector joining 
these two centres is: 

r in jm = rin + GiG / + rim (6) 

where GiG / is the vector between the centres of mass of the 
two basic elements, rin and rim are vectors joining the centre 
of mass of a basic element to one of its many scattering centres. 
The mean square distance becomes: 

~in " = r~n + GiG2 + r12 + GiGj ' r  in + G i G i " r j m  + r in" rim ,l rn 

(7) 

ACmodet I ACA modet 
h A ^  ^ I 

qj qj  I II1111 I 
, 
I 

fi Ll  inn fin 
Figure 3 Models of crystallization involving large crystallized 
sequences 

1474 POLYMER, 1979, Vol 20, December 



'Ai ~6i 'B i  
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

Figure 4 Representation of a basic element in a crystallized chain 
incorporated in the same monocrystal. G i is the centre of mass 

By summation and using the properties of  the centre of  mass, 
the three last terms in equation (7) vanish and the radius of  
gyration becomes: 

1 
R 2 -  2N2e.t 2 ~ ~ ~ ~ (~n+GiG2+r2m) (8) 

i j n m 

where N e is the number of  basic elements and t the number 
of  scattering centres in a basic element. Equation (8) be- 
comes: 

- -  1 1 ..~ 
R2-2fV2 ~ 2 G ~ . + t  ~ rn 

i j n 

SANS by semicrystalfi-ed chains: vean Michel Guenet and Claude Picot 

Introducing r 2, r 2 the mean square radii of gyration of  a 
vertical rod and of  a rod-like loop, I the distance between 
two consecutive rods (which can be called the re-entry 
length) and z = 2k/t  (1 - z = 2lit), we obtain: 

r 2 = (3 - 2 z ) ~  + 4(1 - z)r 2 + - ~ (12) 
2 

which can be written: 

(9) 

2_  2 + re 2 (10) Rg - R p  

for which R 2 is a te rm depending on the mode of  in- 
corporation and r2 is the mean-square radius of  gyration of  

t ~  

the basic element. These two terms will now be calculated 
separately taking into account the incorporation models 
and the different conformation of  the loops joining two con- 
secutive rods. 

Calculation of r 2. For this purpose two simple cases are con- 
sidered. 

(i) Tire conformation of the chain joining two consecutive 
rods is rod-like. 

Here we examine loops which are very tight and virtually 
rod-like. If  k is the number of  elements in a vertical rod and 
I in a horizontal rod-like loop, r 2 can be written: 

(11) 1 2 + r 2 r 2=  t 2 r 2 + 2  r n 

1 1 1 

o 

As the loop is rod-like r 2 ~ I2/12 leading to: 

r 2 = (3 - 2z)r 2 + ~ (2 + z )  (13)  

For the lir~iting cases z = 0 and z = 1 correspondi_ng respec- 
tively to r2 = 0  and I =  Owe find 7 = 12/3 and r2 = r2 which 
shows the consistency of  equation (13). 

(ii) The conformation of the chain joining two consecu- 
tive rods is statistical. 

In the case of  statistical loops the extremities of  which 
are separated by a distance/, the mean square radius of  
gyration is given by xo: 

r 2 = ~ (lb 2 + I  2) (14) 

with I and l as previously defined, and b 2 the mean-square 
length of the segments. 

Expression (14) is valid in a first approximation where it 
is assumed that the chain conformation is not perturbed by 
the monocrystal surface. The calculation then yields: 

r-'~= (3 - 2 z ) r  7 + 2(1 - z)r~ + (2z + 1 )~ /6  (15) 

For z = 1, we again obtain r 2 -- r 2 and for r 2 ~ I2/12, 
e 

equation (13) is also found. 

Calculation of R 2 . We now calculate R 2 for each of the 
two incorporation models. 
(1) Unidirectional crystallization (UC). The distance D bet- 
ween two consecutive basic elements is: 

D = 21 (16) 

Then: 

- -  1 
R 2 - 2 ~ V 2  ~ li-jl2"412 

e i ! 

(17) 

which reduces to: 

R 2 =N~ ( 2 I ) 2 / 1 2  (18)  

Introducing the number of  vertical rods, Nr, equation (18) 
becomes: 

R 2 = N212/12 (19) 

(2) Switch-board implantation (SB). As the trajectory of  
the chain is random, the basic element is no longer planar 
and is characterized by the angle • defined between GiB i 
and AiG i (Figure 4). Simple geometrical and statistical con- 
siderations show that the mean value of q~ is ,I, = n. The 
problem reduces then to the previous case (planar basic ele- 
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Figure 5 Schematic representation of  a statistical adjacent re-entry 
(SAR) in an IPS monoc ~s t a l .  Full and broken lines have the same 
significance as in Figure 2 

negligible loops and a lameUa thickness of 16012 and 
100 A 13 respectively, one is led to the following lower 
limits for molecular weight: 

PE M - ~ 5 x  104 

IPS M~1.5  x105 

If 50% loops are present in the conformation the pre- 
vious values have to be multiplied by a factor of two. On 
the other hand the upper molecular weights easily available 
are: 

ment), but the distance D between the centres of mass of 
two consecutive elements becomes D = (2) 1/2 1 instead of D 
= 21 for unidirecdional crystallization. This must be also 
replaced in the r 2 relations. Now R 3 can be calculated us- 
ing the random walk calculation, wtiich yields: 

R 2 =NrI2[6 (20) 

Nevertheless this model is useful for re-entry lengths larger 
than the distance between two consecutive stems in the 
crystalline lattice. Thereby we have to consider the special 
case of statistical adjacent re-entry (SAR) which is also a 
two dimension incorporation but between nearest neighbour 
stems. It is then clear that the trajectory will be limited by 
the impossibility of 'crossing' itself (Figure 5). We are there- 
fore dealing with a two dimensional self-avoiding walk. The 
exponent of the mean dimension can be calculated from a 
general expression given by De GennesX: 

3 
v = (21) 

2 + d  

where d is the dimensionality of the space which gives, for 
two dimensions, v = 3•4. 

As in all the problems where we have to take into account 
excluded volume, the exact evaluation of r~ is not easy. By 
assuming a negligible contribution of the loops (rod-like 
'loops ) )~7 can be expressed as: 

R 2 =Nlr "5 12/8.75 (22) 

where 8.75 is obtained from (1 + 2v) (2 + 2v) n. 
To summarize all these results, we can put R 3 in the 

general form: 

( M )  2v I2 

R2=z2V Mr (l  +2v)(2 +2v) (23) 

PE M ~  4 x 105 

IPS M ~ 1.5 x 106 

Clearly there is a large range of molecular weights for 
which the above analysis pertains. 

Semicrystallized chains containing large amorphous 
sequences 

In the previous section, the amorphous material has 
been located only in the loops joining two consecutive rods. 
Let us now consider models with long crystallized and 
amorphous sequences. In this section the three different 
models presented in the Introduction are examined. The 
influence of the increase of the number of amorphous (A) 
and crystallized (C) sequences will be discussed afterwards. 

AC model. This kind of model is similar to a diblock 
copolymer for which the radius of gyration has been al- 
ready expressed by Leng and Benoit 9, namely: 

R2=yR2,y +(1 -y)R2,1_y +y(1 -Y)Ga G2 (24) 

with y the weight fraction of chains in the crystallized se- 
quence (including loops), R 2 and R 2 1 y the radii of , y  u ,  - 

gyration of the crystallized and the amorphous sequences 
for given y, and GaG2 c the mean square distance between 
the centres of mass of the two sequences. 

At first, Rc,y and Ra, 1 -y must be expressed as function 
ofR c and R a which are, respectively, the radii of gyration 
for y = 1 and y = 0. I fN c is the number of monomers in 
the crystallized sequence and N a in the amorphous one: 

Nc 
y - -  - -  

Ua +Uc 

Assuming a Gaussian statistic R2,1 _y can be easily 
written: 

(25) 

where M is the molecular weight of the chain and Mr the 
molecular weight of the vertical rod deduced from the 
thickness of th__e mono__crystal. 

Knowing R2 and re2 the use of equation (10) gives R 2 p. . . g 
for a tagged ctiam as a funchon of molecular weight, crys- 
talline parameters and the model adopted. 

The statistical calculations involved in our models sup- 
pose that we are dealing with a large number of vertical 
rods in order to eliminate the fact that the chosen basic 
element leads ev...en to Nr, and in order to reach asymptotical 
behaviour for R2. It is generally admitted that this beha- 
viour is obtained for a number of elements around 30. In 
the case of PE or IPS, taking into account models with 

~aa, 1 -y  = (1 - y)R 2 (26) 

For R2 y the three incorporation models defined pre- 
viously mr/st be considered. Then: 

R2,v=R2,y +r2e (27) 

leading finally to: 

Rc y _-y2VR  + re (28) 

with v and R 2 defined previously. Finally, GaG 2 expres- 
sions depending on the types of incorporation are obtained 
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G~ 

Schematic representation of the AC model 

1 

Rg2-2(2N+n)2  ~ r  2. (39) 
i ! 

where 2N and n are respectively the number of segments in 
the double sequence (13) and in the single sequence (3'). 
R2 can be developed: 

R2 - 2(2N-+ n) 2 
i ] i l 

from simple geometrical considerations. Considering Figure 
6 and assuming the independence of orientation between 
vectors OGa and OG c one is lead to: 

c,c  =oc  +oa2 

According to Gaussian statistics we obtain: 

~ a  2= 2R21_y  = 2 ( 1 - y ) ~ a  2 

(29) 

(30) 

For OGc 2, in the case of unidirectional implantation we find: 

= (31) 

Using L 2 = 12R 2,), and introducing R 2 and R 2 we obtain: 

GaG'2a = 3y2R-~ + 2(1-y)R'-~2a (32) 

In the cases of SB and SAR incorporation OG 2 can be ex- 
pressed as: 

OG 2 = 2R2,y (33) 

This yields: 

for SB 

(34) 

for SAR 

GaG 2= 2y 1"5R2 + 2(1-y)R--2a (35) 

Finally, for each incorporation model the following ex- 
pressions are deduced. 

UC incorporation: 

R 2 = (4 - 3y)y3R 2 +yr 2 + (1 - y)2 (2y + 1)R 2 (36) 

SB incorporation: 

R 2= ( -2y  + 3)y2R 2 +yr2e +(1 - y ) 2 ( 2 y  + 1)Ra2 (37) 

SAR incorporation: 

R 2 = ( -2y  + 3)y2"SR 2 +yr 2 + (1 - y ) 2 ( 2 y  + 1)R 2 (38) 

Three sequence models: ACA and CAC. Considering 
conformations of equivalent double sequences the radius of 
gyration can be then written: 

+ 4 / ~  j ~ i 2 / ' + 2  i ~ / ~ l ~  ] (40) 

where R 2, r2., L 2, l 2. are respectively the mean square dis- 
stances between points belonging to sequences/3, 7, 13 and 
7, 13 and 13. Then equation (40) can be applied to the two 
considered models. 

(i) ACA model Taking some precautions which are des- 
cribed in Appendix 1 and using the same kind of calculation 
as previously we obtain: 

for UC incorporation: 

_ _  _ ( l - y )  2 - -  
R 2 = (3 - 2y)y2R 2 +yr 2 + - -  (2 +y)g 2 (41) 

2 

for SB incorporation: 

R'~- (3 - y2) YR3 + Yr~+ - -  
2 

(1 _y)2  (2 + y ) ~ a  2 (42) 
2 

for SAR incorporation: 

_ y l . 5  _ _  _ 

R 2 = - ( 5 y 2 + 1 4 y + 3 5 ) ] - ~  R2 +vr2+ - 
( 1  - y)2 

(2 + y)R 
2 

(43) 

withR2,y =y2UR2 + r2 andR2,1_y = ( 1 - y ) R 2 / 2  

(ii) CAC model This model involves two crystalline se- 
quences. Structural studies, X-ray experiments in particular, 
show that consecutive crystalline lamellae are parallel. For 
this reason, the two different cases with crystalline sequences 
belonging or not to the same lamella have to be considered 
(see Figure 3). This last case clearly implies a correlation of 
orientation between crystallized blocks. Nevertheless, as 
explained in Appendix 2, a decorrelation of these orientations 
does not lead to different results. 

Concerning the amorphous sequence in this model, it has 
been always considered Gaussian-like. This assumption 
could obviously become irrelevant for high degree of 
crystallinity. 

Taking into account these considerations, we obtain: 
for UC incorporation: 

R"-2g=(y3-3y4) R3 +Yr~ + ( l -Y)2 (-y2+2y+2)R-a2a 

(44) 
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Figure 7 (a) Schematic representation of PE unit cells14; (b) 
Schematic representation of IPS unit cells is. Black points represent 
right-hand helix for instance and open circles left-hand helix 

for SB incorporation: 

Rg2= _ ~_ +y2 +yr2+ (_y2+2y+2)R2 
2 

At first the mean dimensions of a tagged chain as func- 
tion of the molecular weight for UC and SB incorporation 
modes will be examined. From these results AC, ACA and 
CAC models will be computed as a function of chain crystal- 
linity. Finally, we will consider an heterogeneous system 
where the contribution of pure amorphous material has to be 
taken into account. 

UC and SB models 
In this section are presented numerical calculations of the 

radius of gyration as a function of molecular weight for chains 
confined to the same monocrystal. It must be noticed that 
such cases could occur in monocrystals grown from dilute 
solution. In Figures 7a and 7b are drawn the unit cells of 
PE 14 and IPS ~s. From the a and b parameters, one can deter- 
mine the re-entry length in UC incorporation following the 
plane of implantation in the crystalline lattice 16. 

For PE, the calculated variations of Rg as function of the 
molecular weight M in the case of UC and SB incorporations 
with l c = 160 A are represented in Figure 8. From these 
curves, it can be noticed that in the common range of PE 
molecular weights, the values of Rg differ considerably from 
the asymptotic behaviour reached for extremely large mole- 
cular weights. This is. due to the fact that r 2 is not negligible 
in comparison with R2. On the other hand, by considering 
UC incorporation and an amount of 50% of loops the varia- 
tion of R2 is very close toM 0.5 in the range 1 0 S < M <  
2.5 x 105. A similar result has been found by Sadler and 
Keller on PE monocrystals ~7 grown from dilute solutions. 
Complementary experiments allow them to conclude that 
PE tagged chains are incorporated along the (I 10) plane in 
this situation. This effect is amplified for SB mode for which 
in some cases ( /=  I0 A) Rg does not vary. Finally, we can 
remark that these calculated values are smaller than those 
measured by SANS in the molten state ~8. 

For IPS, three types of implantation have been studied, 
these are represented in Figure 9 (l c = 100 A). The Rg varia- 
tions relative to IPS exhibit similar behaviour as for PE with 

(45) 

for SAR incorporation: 

_ / y \ : . 5  - -  (1 y )  2 o c  
R2=~-~) ( 3 y - y 2 ) R 2 + y  r2+ ; (-Y2 + 2Y + 2)R-~ 15C 

(46) .~ 1OC 

with, in that case "~ 
5C 

/y \2V __ _ 
R2 = 1_1  R 2 + . 2  
--c,y ~21 p "e 

and 

R--~, l_y  =(1  - y ) R  2 

DISCUSSION 

From all these relationships, it is clearly impossible to des- 
cribe the specific behaviour of the different models. For 
this reason the calculations will be discussed and illustrated 
for IPS and PE as mentioned in the Introduction. 

3 Motten stat¢~/~ , ~ "  

I I I 

5'104 105 5'105 
M 

Figure8 Theoretical plots of  log Rg vs. l o g M f o r P E .  Full l ines 
give the value of (R-~D)I/2; . . . . .  , lines UC incorporation modes; 

, lines SB incorporation modes and broken lines values 
measured in the molten state by SANS 18. A, UC incorporation with 
rod-like junctions. In this case (110) plane has been chosen16,1"/ 
leading to / = 4.45 A. Rod-like loops have been considered to be 
of the same type as vertical rods in the calculation of ~'2 e. B, UC in- 
corporation with 50% of loops. The radius of gyration of the loops 
has been obtained by using the relation R = 0.45 x M 0.s 18 C end 
D are SB incorporation with respectively I = 20 A and I = 10 A, con- 
sidering only rod-like junction 
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Figure 9 Theoretical plots log f ig vs. log M for IPS. Full lines give 
the (R-JJ~) i l l  values; . . . . .  ,lines UC incorporation modes; ., lines 
SB mddes and . . . . .  , line values of f ig measured in the amorphous 
statel9by SANS. A, UC incorporation with rod-like junctions. 
(I 10) plane has been chosen taking into account the most probable 
re-entrance of rods having same helical configuration 20. This gives 
I = 12.6 A. Rod-like junctions have been considered to be of the 
same type than vertical rods. B, UC incorporation with an amount 
of 50% loops. The radius of gyration of the loops has been deter- 
mined from SANS measurements in the amorphous state 19. C and 
D are SB incorporations with respectively I = 30 A< and I = 20 A. 
Only rod-like junction models are represented; E, SAR incorporation 
with rod-like loops and I = 7.:3 A 

For the CAC model and UC implantation R 2 exhibits a 
very weak decrease with y. 

However, two remarks arise from curves obtained for IPS 
(Figure 11). We observe very important differences in the 
variation of R2 for AC and ACA models between UC and g 
SB types. T h e  UC mode leads to an appreciable increase of 
R2 while R 2 decreases with SB mode. Nevertheless, for CAC 
models wit~ UC incorporation, ~g2 remains almost constant 
until y = 0.5. This degree of crystallinity cannot be usually 
exceeded for IPS. Then a certain ambiguity arises in the 
eventual choice between such a model and Flory's model. 
This also justifies the fact that calculations have not to be 
developed for an higher number of sequences to reach the 
non-variation of the radius of gyration. 

These examples based on two different polymers describe 
the different behaviours related to the effect of the crystal- 
line parameters. Thereby, it is clear that considerations pro- 
posed for PE cannot be necessarily applied to IPS or other 
polymers. 

Heterogenous system: contribution of the amorphous 
material 

Up to this point, only scattering from identical chains has 
been computed. As has been mentioned, blends of  pure 
amorphous and semicrystallized chains must be considered. 
To describe such a system, a new set of parameters must be 
introduced, namely: w a the weight fraction of chains in the 
amorphous continuum; w c the weight fraction of amorphous 
chains located in the crystalline phase, and x, the weight 

the difference that the asymptotical behaviours are reached 
more rapidly. This results from the smaller values of the 
lameUa thickness and the values of I which are higher in this 
polymer. The ~ term can be rapidly neglected for UC even 
by introducing 50% of loops. Lastly, contrarily to the PE, 
Rg variation for UC is located above the values obtained in 
the amorphous state while these for SB and SAR are below. 

AC, ACA, CAC models 
To illustrate the relations obtained for these models the 

radii of gyration of amorphous state given in refs 18 and 
19 have been used again. Nevertheless, it has been shown 
by i.r. spectroscopy 16 that adjacent re-entry occurs preferen- 
tially along the (200) plane of the crystalline lattice for PE 
in the bulk crystallized state for which the models seem 
more adapted. Consequently, we will use the value I = 
4.93 )k for the re-entry length concerning UC incorporation. 
In return, nothing will be changed to evaluate the radius of 
gyration for IPS in the crystalline state. The calculations are 
performed for each polymer for a single molecular weight 
which is chosen sufficiently high in order to use the relations 
in a large range of y, namely, PE M --- 134 000, IPS M = 
500 000, which correspond._to the same number of monomer 
units for both polymers. R 2 has been plotted as a function of 
y without introducing the effect of loops which will be 
examined further. 

From the curves relative to PE (Figure 10) some corn:_ 
ments can be made. Whatever the incorporation mode R 2 
decreases with y. For middle crystallinities (~50%) it looks 
difficult to appreciate a significant different between incor- 
poration types. 

~ 2.5 

CAC 

/ ?  
. ~ ~ - ' ~ _ .  ~ . . . .  ..~ 

. . . . .  ~ ' -~__~._~,. . .~___ 

CA" " . . . . . . . .  
l l i l i. i i L l 

O 0 5  
x 

Figure 10 R~ as funct ion of  I / f o r  PE. , lines represent UC 
incorporat ion and . . . . . .  lines, SB incorporat ion 

,¢ '2 

Figure 11 

i 
i 

" - . . . . . .  CA (SB)  . 

i I I I i I I ] , 
0 0.5 

X 

R2~ as funct ion of y for  IPS. Same legend as in Figure 10. 
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1-x)-oxis 

I.  
a 

~ -ox is  

the mean dimensions of  amorphous chains linked to crystalline 
sequences or dispersed in the amorphous surrounding do not 
differ significantly). 

Such situations can be represented on a three dimensional 
diagram as in Figure 12a. The plane for w c = 0 and w a = 0 
correspond respectively to cases 1 and 2 detailed in Figure 1. 
The angle 0 is defined as tan 0 = Wa/W c. The dotted line 
( -  - - )  defines a plane for x = C te. Such a plane is represen- 
ted in Figure 12b where the variation of R-~g is plotted for 
different repartitions of  the amorphous material. This kind 
of  representation is interesting since knowing experimental 
values of  Rg  and x one is then able to determine w a and Wc 
for the different models. Thereby, the value of  w a can be 
compared with the experimental value deduced from other 
techniques. 

To take the existence of loops into account, the same 
three-dimensional diagram can be drawn but the (1 - x ) -  
axis must be replaced by a (1 - x/z)-axis. Alternatively, for 
any w a and w c one will have: 

Wc 

b 

WC=I-x x . c t . e  WA= 1-x  

Figure 12 (a) Three dimensional diagram of  R~ as funct ion of  w a y 
and w c. One must not ice that the scale on (1 - x ) - a x i s  is not the 
same as that  on w a and w c axes. The modulus p is given by 

~/2" 1 
p =  

2 (cos _n _ 8) 
4 

x/z 
y - - -  (s0) 

w c + X/Z  

Therefore R 2 must be calculated according to: 

R=g = WaR2  + (wo +  /z)R 2 Wc,X/Z (51) 

Another representation can be adopted for which curves 
obtained at w a = 0 and w c = 0 are plotted together. One 
then defines a domain in which the two extreme situations 
described in Figure I are present. The chains fully incor- 
porated in one monocrystal will have a radius of  gyration 
given by equation (23). The loops will limit t__he crystallinity 
so that the maximum or minimum value o f R  2 will be given 
by ( . . . . .  line in Figure 13): 

-- 12 + ~ ( x )  (52) 
R2  = (xM/Mr)2v (1 + 2=')(2 + 2v) 

Using these consideration._s and different z parameters, a 
set of  curves representing R2 as a function o f x  has been cal- 
culated (Figure 13) in the case of  IPS for ACA model and 

so that  the relat ion w a + w c + x = 1 is veri f ied. (b} Representat ion o f  
the var iat ion of  R~ as funct ion o f  w a and w c at x = C te 

fraction of crystallized material (x is then the experimental 
crystallinity). As a first step the calculation will be restricted 
to z = l(this means that loops defined previously are neg- 
lected). We then obtain the relations: 

Wa + Wc + x = 1 (47) 

o r  

Wa + Wc = l - x (48) 

R 2 clearly becomes: 

R 2 = Wa R2  + (w e + x ) R  2 (49) 
W C, X 

where R 2 and R 2 w refer respectively to chains in the amor- 
• C , X  . . - -  

phous continuum and m the crystalline phase (note that R 2 
depends on R2, R2 and y with y = x / x  + We, assuming that c,x 

z-1 

_ J/1_  . /  

i i i i i i i i 

0 0'5 
X 

Figure 13 ~ v s x .  Curves calculated fo r  wa = O (-- -- --) ~nd wc ; 
0 ( ) are p lo t ted on the same figure. The broken line . . . .  
is computed f rom equat ion (52) and gives the l imi t  o f  R~and x 
when loops are taken into account. For each value o f  z, a domain is 
defined in which chains having whether  ACA,  UC or amorphous con- 
format ions are blended fo r  IPS 
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5 
\ \  

a 

From Rg relations calculated in this paper, it appears that 
a single SANS experiment in the Guinier range does not 
always lead to an unambiguous determination of the crys- 
talline chain conformation. Complementary information 
can be provided by studying the molecular weight depen- 
dence of Rg. Moreover, behaviour of the scattered intensity 
in the intermediate range of scattering vector could help to 
differentiate UC and SB incorporation modes. UC will cor- 
respond to a sheet (with I(q) ~ q-2) while SB will correspond 
to a more compact medium (then I(q) ~ q-n with n > 2) 21. 

2, 

\ \  - -  x 

Figure 14 (a} Schematic representation of ACA model. (b) Sche- 
matic representation of CAC model 

UC incorporation. However, this diagram is only useful as a 
first step in finding possible conformation. Figure 13 points 
out that for an important loop contribution (z ~ 0.5) the 
mean dimensions are weakly affected by increasing crystal- 
linity. This shows another example where the distinction 
between Flory's model and long crystallized sequences model 
(ACA) is ambiguous. 

CONCLUSION 

APPENDIX 

ACA model 
We consider Figure 14a. In7 defined in relation (40) can 

be expressed as: 

Lii = AiC/= AiO 1 + O1G c + GcC] (A1) 

Then L~. becomes: 

L 2= Ai021 + O1G2 + GcC2 + 2Ai01"O1Oc 

+ 2AiO1 "GcCj + 201Gc'GcC l ( A 2 )  

Assuming the decorrelation of orientation between AiO 1 
and O1Gc, taking the summation over n and N and using the 
behaviour of the centre of mass, we finally obtain: 

n N n N 

E E E E 
i i i j 

(Ai02  + 2 2 O1G c + GcC ~ (A3) 

For lq defined in relation (40), we can also use the same 
kind of argument leading to: 

N N N N 

~ 1 2 " = ~ ( A i O 2 1 + O I O 2 + O 2 A 2  ) (A4) 

i ./" i ] 

The models defined to perform these calculations may look 
somewhat primitive. However, they lead to expressions of 
the mean dimensions already delicate to handle. In a more 
accurate description of the conformations supplementary 
refinements should be introduced. For instance, conforma- 
tion of amorphous loops and sequences in the crystalline 
phase has been assumed to be Gaussian and unperturbed by 
the vicinity of monocrystals. A better approximation should 
consist of taking into account the impossibility of the chain 
occupying the space delimited by the monocrystal. Alter- 
natively a more realistic approach would envisage the possible 
polydispersity in composition leading to mean values o fx  
and y. 

Such calculations suppose that we are dealing with mole- 
cular weight monodisperse chains. It can be shown, especially 
in the case of UC incorporation that a measured radius of 
gyration in SANS must be associated with an average mole- 
cular weight given by: 

M = X/Mz'Mz + I 

UsingM w instead of this average in a plot logRg vs. logM 
we are led to overestimate the values of Rg. 

From these relationships, which can be expressed as a 
function of R2, R 2 and y we are able to calculate relations 
(41, 42, 43) 

CAC model 
Let us consider Figure 14b. Then Lq can be written: 

Li! = CiG1 + G101 + O1A] (A5) 

By assuming the decorrelation of orientation between 
G101 and O1A j and using the same arguments as previously, 
one obtains: 

n N n N 

i j i j 

(Ci G2 +G1 O2 +O1A/2) (A6) 

For lii, we have: 

li i= C/G1 + G101 + O102 + O2G2 + G2C1 (A7) 

Considering that the angle w between O1G 1 and O2G2 
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can take all the values from 0 to 2rr and using previous 
arguments, we FmaUy deduce: 

N N N N 

~ i J  = ~ E ( C ] G 2 + G l O 2 + O l O 2 + O 2 G 2 + G 2  C2) 

i / i ! (A8) 

It must  be mentioned that in all these calculations we have 
not taken into account the effect of  the monocrystal  surface. 
Then the relations are only approximations which are not  
useful in the case of  polymers having very large lamella 
thickness. 
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